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Summary 

Chemometrics encompasses many facets such as experimental design, data collection and 

analysis, and many others. This paper, in honor of Paul Geladi, provides our perspective on 

alternative data analysis approaches that embrace the scientific intuition of the theory of 

analytical chemistry (TAC) by Booksh and Kowalski. Since the terms chemometrics, machine 

learning, and artificial intelligence are often used interchangeably without clear definition, we 

briefly offer our viewpoint on these three terms and their usage. Next, we launch into the 

significance of matrix effects (the Achilles heel of chemical analysis) followed by its influence 

on model selection and interpretation (explanation), figures of merit, and sample similarity 

assessment for model reliability, outlier detection, and classification. The motivation for this 

perspective is to express our opinion on expanding the role of the TAC multivariate ideologies 

by integrating a more comprehensive matrix effect viewpoint with the Rashomon effect to 

improve conventionally practiced data analysis and modeling processes. This expository 

discussion revolves around spectroscopic data such as near infrared, fluorescence, etc., but the 

concepts are relevant to other chemometric data structures such as quantitative structure activity 

relationship (QSAR). 
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1  INTRODUCTION  

This perspective emphasizes our views on key chemometric data analysis processes that we think 

are static and fragmented. In particular, upholding the importance of the theory of analytical 

chemistry (TAC) multivariate principles beyond application to rudimentary multi-way methods 

and respective figures of merit (FOM).1,2 We consider these topics as appropriate to honor Paul 

Geladi’s vast chemometric work. Paul was a ground-breaking creative thinker, and we highlight 

one of his progressive projects named regression model comparison plot (REMOCOP) in section 

5 on the Rashomon effect.3,4 Due to the often and inappropriate interchange of the terms 

chemometrics, machine learning (ML), and artificial intelligence (AI) in this journal and others, 

the perspective begins with a brief narrative on terminology differences. Making the clarification 

is important for the reader to understand what we mean by chemometrics. Basically, when it is 

stated that ML or AI is being used with chemical data, it should be recognized that because 

chemical data is involved, it is chemometrics.  

     A substantial part of this perspective demonstrates the wide influence of sample matrix effects 

underlying chemometric data analysis. By expanding the matrix effect viewpoint, the 

multivariate position of the TAC can be integrated with the Rashomon effect5-7 to improve 

conventionally practiced data analysis and modeling processes. Briefly, assuming a measured 

sample response is due to the amount of pure analyte present, then we think of a matrix effect as 

anything that can alter the pure analyte response such as sample interferents, physicochemical 

and physiochemical effects, environmental and instrument measurement conditions, sample 

preparations, etc. The TAC is briefly overviewed in section 3. Following, matrix effect details 

are provided in section 4 to lay the foundation for succeeding sections detailing the relevance of 
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the TAC and Rashomon effect on model selection and interpretation, FOM, and sample 

similarity assessment. Whether the goal is quantitative analysis using regression or classification 

(including outlier detection) using complex deep learning or other ML methods, matrix effects 

play a central role in making it difficult to obtain accurate and precise analyses as well as any 

chance of model interpretation.  

     We are not claiming our viewpoint is the final say on alternative chemometric processes and 

there are other opinions on directional advancements. Our goal is to present some different 

chemometric thinking compared to what seems to be mainstream. Tweaking a partial least 

squares (PLS) algorithm or applying and/or modifying a popular off-the-shelf ML do not count 

as evolving the paradigm in our opinion. We hope the paper initiates active discussion and fresh 

ponderings on data analysis schemes and, at the same time, clarifies some misconceptions in 

chemometrics. The reader should keep in mind that while the examples and much of the 

discussion relies on spectroscopic data such as near infrared, Raman, etc., all concepts are 

pertinent to other chemometric dataset types such as quantitative structure activity relationship 

(QSAR) and other activity relationship constructions or a collection of features profiling each 

sample in a dataset.  

 

2  CHEMOMETRICS, MACHINE LEARNING, AND ARTIFICIAL INTELLIGENCE 

The terms chemometrics, ML, and AI are often used interchangeably and, to us, they have 

distinct meanings. Following is a brief presentation of the uniqueness of each of these words to 

better understand the fundamentals of matrix effects in chemometrics.  
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2.1  Chemometrics  

An excellent review with historical documentation of the broad chemometric field is available.8 

For a definition of chemometrics, we rely on the one provided by Svante Wold in his insightful 

1995 paper (which is always a great re-read for insight and motivation) where chemometrics is 

defined as: ‘How to get chemically relevant information out of measured chemical data, how to 

represent and display this information, and how to get such information into data’.9 This 

perspective is concerned with the first part, how to get chemically relevant information out of 

measured chemical data. As for the second part, concerning the representation and display of 

data, our laboratory is using immersive analytic approaches focusing on virtual reality as the next 

generation display interface to visualize data.10-13 The third part of the definition we categorize as 

mostly pertaining to measurement processes including experimental design and is not part of this 

perspective.  Many of our points are in step with his themes that we refer to throughout the 

perspective. Some specifically related quotes from his 1995 paper are: 

− “If we let statistics become too influential, its present fashions … , might convert 

chemometrics into a useless appendix of mathematical theory. … In essence, we must 

remain chemists and adapt statistics to chemistry instead of vice versa.” 

− “Here the population concept is at best an abstract model of a real problem, in my view 

lacking so many properties of a real population that is not very useful in chemistry.” 

− “And chemometrics must continue to be motivated by chemical problem solving, not by 

method development.” 

− “However, a successful future for chemometrics depends, on continued problem 

orientation, with the important task solving chemical information problems in an efficient 
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and appropriate way. Certainly, some method development is needed, but this should be 

motivated by solving real chemical problems, not by mathematical and statistical 

sophistication. To quote Einstein: ‘make everything as simple as possible – but not 

simpler’.” 

− “Hence we can safely conclude that any chemical data we put our hands on are 

‘contaminated’ … .” 

− “The study of complicated systems is by necessity multivariate.” 

− “Multivariate analysis is the indirect observation of intrinsic, ‘latent’, variables.” 

 

2.2 Machine Learning 

This area of study stems from computer science focusing on building algorithms that enable a 

computer to learn from the data and make predictions--a data driven approach. Machine learning 

algorithms are typically agnostic to the discipline they are applied to, e.g., deep learning, 

principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), 

uniform manifold approximation and projection (UMAP), feature selection, transfer learning, 

etc. are generally applicable to a variety of applications. It is when a ML algorithm is applied to 

or developed with the intention to a solve a chemical problem that it becomes chemometrics. 

Chemometrics is its own entity qualified to handle the nuances of chemical data. Not all ML 

approaches are necessarily the best for chemometrics since some are not explicitly intended to 

solve chemical problems. Other fields that tune ML methods to suit their discipline’s dataset 

structures and needs also label their respective areas with field-dependent names. These names 

and field include predictive analytics for business, econometrics for economic forecasting, 
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pedometric for soil modeling, physics-informed machine learning for physics, among others. 

Partial least squares (PLS) can be considered a ML method but when it is applied to solve a 

chemical problem, then it becomes chemometrics. If PLS is used to solve a business problem, 

then it would be a predictive analytics study. 

 

2.3 Artificial Intelligence 

We find that it is increasingly common for AI to be used as an umbrella term encompassing 

advanced learning techniques like deep neural networks and transformers, all the way to simple 

machine learning tasks such as PLS. It is challenging to pinpoint a strict definition of AI because 

it does not yet really exist and hence, it is more an understanding of a machine thinking and 

reasoning like humans. The characterization from Ref. 14 is rather general which states that AI, 

in its broadest sense, is intelligence exhibited by machines, particularly computer systems. It is a 

computer science field that develops and studies software methods and hardware to enable 

machines to perceive and comprehend their environment and use intelligent learning and 

reasoning to take actions that maximize their chances of achieving defined goals. By this 

definition, chemometric and ML algorithms are not considered AI. While they have built in 

decisions to appear intelligent, these autonomous decisions are typically based on pre-set 

algorithm numerical thresholds. Thus, such autonomous algorithms are written by humans with 

human cognitive biases to perform the programed task. For example, PLS is not AI and even 

autonomous versions that determine the optimal number of latent variables (LVs) to form the 

model are not AI. While there have been recent glimpses of AI for simple tasks, to date, true AI 

does not exist. What is currently named AI is really algorithmic as are ML and chemometrics and 
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if chemical data is involved, what is often mistaken as AI and ML should be named 

chemometrics. 

 

3  The Theory of Analytical Chemistry (TAC) 

Close to 30 years have passed since the TAC by Booksh and Kowalski was published where 

multivariate instruments and corresponding data orders with respective multivariate figures of 

merit (FOM) were described. 1,2 The TAC advanced conventional univariate chemical analysis 

thinking to multivariate concepts with two main themes. In the first, analytical instruments are 

labeled by the tensorial order (number of dimensions) of the data they produce, e.g., a spectrum 

from a spectrometer is composed of multiple measurements from a single sample assembled into 

a vector and is first-order for one dimension of data. The second broadened basic analytical 

chemistry FOM from univariate to multivariate. Increasing instrument and data orders extends 

the multivariate nature of the data and FOM. Correspondingly, the information content and net 

analyte signal (NAS) increase and hence, analyte selectively also increases permitting optimal 

designs of laboratory analysis procedures. An emphasis of this perspective is to apply the higher 

order multivariate principle of the TAC to other common data analysis processes currently 

operating in lower orders.   

 

4.  MATRIX EFFECTS 

In a university general chemistry course, students learn about intra- and inter-atomic and 

molecular interactions and their effects on respective physicochemical properties, e.g., boiling 

points of a polar liquids are greater than nonpolar liquids or the strengths of some intra- and 

inter-atomic interactions are correlated to physicochemical property trends on the periodic table. 
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Later in analytical chemistry courses, these atomic and molecular interaction effects on chemical 

analysis are presented under the umbrella term matrix effects.15 Because of matrix effects, early 

analyses typically involved developing extraction and chromatographic methods to isolate the 

analyte into a relatively matrix effect free environment with perfect selectivity. 16 Following 

extractions, the final univariate analysis was commonly gravimetric, volumetric, 

electroanalytical, or spectral. Alternatives to extraction were the standard addition method 

(essentially matrix matching the calibration standards to the sample matrix) or identifying an 

analyte sensor that is interference free (or nearly free with a small selectivity coefficient for 

interferences) such as a spectral wavelength or an ion selective electrode.15 

     Before proceeding, we want to first define what constitutes a pure analyte. Whether atomic or 

molecular, there is a quantum mechanical structure to the analyte and this assumed configuration 

is perturbed by its environment and measurement process that we name matrix effects. Thus, we 

think of the pure analyte as that in a gas phase at infinitely low pressure where the analyte is least 

likely to be perturbed. Svante Wold noted that this idealized state lacking matrix effects is 

experimentally inaccessible and impractical for real-world use since samples are imperfect.9 

Even for pure liquid or solid forms of the analyte, there is a perturbed quantum mechanical 

relationship compared to the isolated gas phase. Thus, each sample has its own unique matrix 

effects that can be homogeneous throughout the sample or heterogeneous, as is common with 

solid samples. It should be noted that for some chemical systems, sample-wise matrix effects 

trivially vary between samples due to little change in sample compositions and in this case, 

matrix effected pure component spectra can probably be taken as respective pure component 

spectra. 
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     In this perspective, sample-wise matrix effects are regarded as a larger-scale problem than just 

the molecular-scale interactions creating quantum mechanical perturbations. For example, recent 

developments in bioanalysis require adding the cellular-scale microenvironment as a matrix 

effect where the interaction between physiochemical and chemical processes alter the measured 

properties. Also contributing to sample-wise matrix effects are all aspects of processes involved 

in collecting and preparing a sample and the measurement conditions such as the environment 

and instrument. The reader is referred to Refs. 17-19 for excellent discussions of these and other 

extensive sources of matrix effects.  

     Using spectroscopy and basic chemical theory with no matrix effects, a measured spectrum 

for the ith sample xi is represented as a linear combination of pure component spectra for all 

responding constituents kv and their matching amounts yiv. Recently, a mathematical 

characterization of matrix effects was derived leading to the expression  

X = (Y A)F + E                 (1) 

for a training sample set X used to form regression or classification models where F represents 

all possible pure component spectra k and basis set pure component matrix effects r with 

 
=  
 

K
F

R
per corresponding amounts y (in Y) and  (in A) and E symbolizes randomly 

distributed gaussian error that is henceforth removed for a simpler discussion.20 If a component 

or matrix effect is not present in the sample, the matching amounts y and  are zero. In essence, a 

spectrum is a snapshot of the sample structure that can be expressed as a linear combination of 

pure component spectra and matrix effect basis vectors. Ideally, X represents an independent and 

identically distributed (iid) training set. However, as noted by Svante Wold’s quote in section 2.1, 

that to speak of the training sample set population is abstract and lacks many properties of a real 
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population. Hence, due to the breadth of sample-wise matrix effects, every new sample from the 

real population to be predicted for analyte amount or class membership has the potential to be an 

outlier (out of distribution (ood)) to the training set.  

     It may be that a handful of vectors from F dominate an x with larger  values than other 

vectors and these leading vectors are probably particular to the measurement system. For 

example, with spectral data, major matrix effect vectors would likely be different between NIR, 

FTIR, NMR, fluorescence, etc. From eq. 1, it is apparent that a multitude of linear combinations 

of R exists to form x with the particular sample non-zero K and distinguishing pure component 

matrix effects enfolded to x is not practicable.  

      While attempts with quantum mechanics have been made to interpret NIR spectra relative to 

wavelength peaks, these endeavors have been for simple single component chemical systems in a 

solid or liquid states as well as in a solvent.21,22 Following these spectral interpretations are often 

interpretations of model basis vectors and regression vectors such as those for PLS. As noted in 

the next section, such interpretations are not reasonable. 

     Chemical data is unique in that the basic underlying cause of most matrix effects are the 

sample’s complexities of atoms and molecules and teasing out the exact matrix effects is 

generally not possible. Simple examples of matrix effected spectra from F were recently 

presented and discussed.20 Chemometricians should develop and apply models with matrix 

effects in mind, either to alleviate the unfortunate influence of matrix effects on their results or to 

leverage the appearance of similar matrix effects to make more accurate predictions. Chemical 

data is similar to other discipline datasets, e.g., econometrics, psychometrics, pedometrics, or 

biometrics to name a few, where the respective field dataset underlying variance structure are 

incredibly complex.  
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4.1 Non-Uniqueness of Basis Vectors for X and the Regression Vector Model b̂   

Numerous schemes exist that endeavor to isolate and characterize matrix effects. Consider the 

simple PCA of a data matrix X where the PCs or LVs are extracted to form a vector basis set 

spanning X. Attempts have been made to interpret the structure of each PC relative to the 

measured variables making up X, such as wavelengths with spectral data. However, PCA is just 

one of the many matrix decompositions that can be used with each creating a separate basis set 

with unique sturcutre.23 Furthermore, because spectra are non-unique in that many possible linear 

combinations of the matrix effects exists, a model regression vector estimated from training set 

X and y by  

( )( )ˆ ++
= =b X y Y A F y                  (2) 

is just one of the many feasible models where the superscript plus sign denotes a generalized 

inverse. This multiplicity of regression vectors is further characterized as the Rashomon effect in 

section 5.3.5-7 Briefly, the Rashomon effect stems from Akira Kurosawa's 1950 film ’Rashomon’ 

where a murder is described in four contradictory ways by four witnesses.24 The Rashomon 

effect means that each person (model) does not provide a full objective accounting of all the 

information. 

     Using the singular value decomposition (SVD) of X = UΣVT as an example basis set, the 

above points are further supported by substituting the SVD into eq. 2 to form  

( )1 Tˆ + −
= = =b X y VΣ U y Vβ                  (3) 

showing that any regression vector can be expressed as a linear combination of the eigenvectors 

in V.25 Another basis set can be similarly used such as PLS LVs to form the same regression 

vector23 and hence, the same b̂ can be obtained from each basis set.  
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     A complementary manifestation of eq. 3 is   

( )1 Tˆ −
= =b VPΣ U y VPα                  (4) 

where P represents a diagonal matrix with filter factors on the diagonal.26,27 Example filter 

values are: PCR (pi =1 or 0), ridge regression (RR) (0 ≤ pi ≤ 1), and PLS (0 ≤ pi < ∞). Other filter 

factor values can be used to form a multitude of models (e.g., generalized RR) that all predict 

with equal accuracy. If new prediction samples are iid to the calibration set, then which ML 

algorithm used to form the prediction model does not matter (deep learning, PLS, etc.)28 

demonstrating the Rashomon effect described in section 5.3. 

 

5  MODEL INTERPRETATION (EXPLANATION) 

In light of the above discussions, one may be asking how then can a model such as a PLS 

regression vector be interpreted? Before diving into model interpretation and answering this 

question, we want to define what we mean by interpretable versus explainable models. These 

two terms are often used interchangeably but there is a difference and unfortunately, there are no 

agreed upon distinct meanings.29-33 After our clarification, we describe the Rashomon effect5-7 

and use it to further justify why we do not think interpretation (explanation) of a chemometric 

model is possible under normal conditions with today’s knowledge base. We also discuss model 

diversity, multiplicity, generalizability relative to the bias-variance trade-off, and selection, 

important to understanding models and the Rashomon effect. We conclude this section with steps 

that can be taken to perhaps provide limited model interpretability (explainabiltiy).  
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5.1 Model Interpretation versus Explanation 

The convolution of trying to unravel the differences between interpretability and explainability is 

too complex for this discussion and we will accept a simple version. Interpretability is seen as 

the mechanics of how model predictions form from the model without necessarily knowing why, 

i.e., the model cause and effect. Explainability is being able to explain in human terms the 

internal mechanics of why the model formed by the machine or deep learning system. As an 

example, the coefficients of a PLS regression vector b̂ dictate its shape and direction that weight 

and linearly combine the respective sample spectrum wavelengths by ˆˆ
T

y = x b . It is easy to see 

how the predicted analysis amount is formed from the vector product sum. However, why the 

particular wavelength b̂  coefficient values is not apparent, i.e., what did the model learn to 

become that shape and direction? Because model coefficient values stem from the particular 

training set sample-wise matrix effects, it is clear that coefficient values themselves are dynamic 

and not fixed to certain values. Thus, with chemical data, we postulate the why is not obtainable. 

For example, trying to explain a PLS regression vector relative to the LVs is not realistic as 

another basis set (see section 4.1) could be used to make that same regression vector giving a 

completely different model explanation. Using one basis set over others limits the chemical 

viewpoint. Additionally, as shown in section 5.3 on the Rashomon effect, if the training samples 

change by a cross validation, then different regression vectors result with different explanations. 

This unobtainability of model explanation is further elaborated in all the following subsections of 

section 5. Lastly, it needs to be emphasized that we use explanation to refer to the common use 

of model interpretation in the chemical and chemometric literature.  
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     It is often stated that complex models (a model with large number of parameters) are less 

explainable than simpler models.28 This analysis stems from Occam’s Razor that among equally 

accurate models, the simpler ones are better. However, in context of the discussion on matrix 

effects and models, simpler models are not necessarily more explainable for chemical data and 

the simpler model may not be capturing as much of the matrix effects as a more complex model. 

For example, the weights of a linear model (e.g., regression coefficients) might seem 

explainable, but they are dependent on features used, pre-processing, etc. Case in point, the 

relation between COVID risk and vaccination can be positive or negative depending on whether 

the features include measures of immunodeficiency, old age, or infancy.34 Thus, we strongly 

agree with the statement that neither linear models, rule-based systems, nor decision trees are 

fundamentally explainable.29 

     Some approaches to interpreting or explaining a model rely on a post-hoc approach. For 

example, a sample molecule is classified into a category because its spectrum or set of molecular 

descriptors look like those in the category; a “this looks like that” approach.35-40 However, due to 

the underlying intricacies of matrix effects, even post-hoc approaches can be sketchy with 

chemical data. 

 

5.1.1 Simple versus Complex Models     

Further muddying the waters of model explainability relative to simple versus complex models 

are recent bias-variance tradeoff observations with deep learning networks.41-46 Classical theory 

dictates that models balancing the ML bias-variance trade-off is located between underfitted and 

overfitted models. Shown in Figure 1 is a characterization of this classical view where a model 

from the lower part of the U-shaped curve denotes a useful model. Past chemometric work 
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suggested that the classical U-curve is more skewed due to a slower increase in bias as model 

complexity increases.47 The possibility of having both bias and variance decrease with increasing 

model complexity was also pointed out. 

     Current work with deep learning networks are showing a dissimilar pattern from the classical 

understanding where large overparametrized networks maintain small generalization errors in 

spite of the models being overfitted.41-46 Displayed in Figure 1 is a depiction of the situation and 

similar plots were obtained with real data. Note that at first the classical U-curve forms followed 

by the second drop for a ‘double descent’ curve. Recent work details some reasoning behind the 

double descent observed in real data.45,46 Such complex models are difficult to make sense of 

and, in spite of the general acceptance of Occam’s Razor, the simple model may not be best and 

more intricate models can apparently be more accurate with better generalizability. With 

chemometric data, in order to form a model orthogonal to the full complement of the matrix 

effects, the ‘global’ NAS model requires ( )1 0 0
T

Fb = and this NAS model would be too 

overfitted (bumpy or jagged in appearance) to explain20,48 and may reside in the double descent.  

Figure 1. Graphical characterization of the classical bias-variance trade-off perception (left) and 

the proposed view with the ‘double descent’ (right). 
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5.2 Making Explainable Models 

A general goal in ML is create “more explainable” mdoels.39 However, making such models is 

not without many challenges and a recent paper highlights the problem of making explainable 

models.41 Presented in this section is one aspect of creating explainable models by placing 

constraints into the model building process, a common tactic in chemometrics.   

     By constraining a model to satisfy specific penalties,49-51 explanation of the resultant model 

may improve towards the particular phenomena constrained. Penalties on known pure 

component analyte (ka), interferences (ki), and matrix effects (rm) spectra, i.e., 

T

a

T

i

T

m

 
 

=  
 
 

k

F k

r

have 

been used where the constraints strive for collinearity between the model and the analyte pure 

component spectrum ( 1
T

a
ˆk b = ) and orthogonality with interferents and matrix effects ( 0

T

i
ˆk b =  

and 0
T

m
ˆ =r b ) or ( )1 0 0

T

Fb = . The final selected model is supposedly explained as 

nulling interferents and matrix effects but in reality, it is just one of the many models that can 

null these effects and yet each model has a different shape and magnitude and is hence, non-

explainable.  Only CLS provides an orthogonal NAS model and ILS methods form oblique NAS 

models.20,52-54 It is important to note that the CLS model only captures a local NAS view 

corresponding to the particular training set used.20 The more penalties included in forming 

models, the more each penalty is compromised relative to the other penalties in the group, i.e., 

the optimizer does not focus on one penalty but compromises across all penalties. Even with 

dominant constraints, it may be difficult to attach meaning to the actual effect of the major 

phenomena constrained.  
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     Perhaps explainability requires using inputs that themselves are individually explainable such 

as wavelengths. However, relative to our discussion on sample matrix effects and the Rashomon 

effect (including wavelength selection) in the next section, identifying analyte specific features is 

difficult short of chromatographically or chemically extracting the analyte from its sample 

matrix. 

 

5.3 Rashomon Effect 

It was becoming apparent to many researchers that many different and contradictory models can 

be formed from one dataset (regression, decision trees, neural networks, etc.) that all accurately 

predict new samples. This modeling observation was named the Rashomon effect5 where each 

model (person) does not provide a full objective accounting of all the possible matrix effects.5,24 

A worthwhile quick read is a recent viewpoint on the Rashomon effect in ML characterizing the 

circumstances reasonably well.6  

     Svante Wold noted ‘Importantly, the domain, the multidimensional volume, containing the 

‘best’ solution to given objective has a nonzero volume. This necessitates experiments to find the 

best point(s), the best set(s) of conditions inside this domain (our parenthetical pluralization).’9 

Recently, a detailed paper was published that mathematically describes the Rashomon effect7 

including the Rashomon volume, set, and ratio all which parallel Wold’s statement. Since the 

original Rashomon effect paper, several updated versions have been posted. Briefly, the 

Rashomon volume is the number of models in the hypothesis space, the Rashomon set 

corresponds to those models with a risk (prediction error) less than or equal to a minimum risk 

plus an offset of θ where θ is the Rashomon parameter with θ ≥ 0 (the set of models with a loss 

below a threshold). Depicted in Figure 2 are various Rashomon sets depending on the θ value. 
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The Rashomon ratio is obtained from the Rashomon set ratioed to the Rashomon volume. From a 

plot of the Rashomon ratio against the risk (loss), the Rashomon curve is obtained with a Γ-

shape. Figure 3 illustrates the plot and the reader is referred to it for a qualitative description of 

the Rashomon curve. A large Rashomon ratio at the elbow correlates to machine learning 

algorithms with similar accurate performances and represents an area to select models from and 

which ML algorithm used to train and predict with does not matter (deep learning, PLS, etc.).7,28  

    

Figure 2. A representation of a Rashomon set in 3-D 
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Figure 3. Depiction of the Rashomon curve in the original sense (left) and as chemometricians 

may view it (right). In both figures the purple circled region corresponds to the Rashomon elbow.  

 

5.3.1 Chemometric Examples of the Rashomon Effect     

Following are multiple chemometric examples of the Rashomon effect ending with Paul Geladi’s 

regression model comparison plot (REMOCOP).3.4 

    The easiest Rashomon effect to recognize is wavelength selection with too many selection 

algorithms to list. Regardless of the algorithm, each time it is run with a different pipeline 

including samples used, different wavelengths are identified as ‘best’ and each best set accurately 

predicts samples. Displayed in Figure 4 are prediction errors plotted against the multiple linear 

regression (MLR) vector 2-norms for three subset sizes using 10,000 random selections each for 

a NIR data set. From Figure 4, it is observed that multiple good predicting models exists with 

different sample and wavelength combinations. The histogram in Figure 4 indicates that only a 

few wavelengths are perhaps favored. It may be possible to mine out the important wavelengths 

using the variable importance cloud (VIC).55 The VIC reveals wavelength importance relative to 
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the significance of other good model wavelengths in the Rashomon set. For example, the VIC 

can disclose that a wavelength may be important only when another wavelength is not selected. 

Regardless, in context of our sample-wise matrix effects discussions, it would be difficult to 

provide any explanation to why selected wavelengths are important relative the complex matrix 

effects.  

       

Figure 4. Prediction and MLR regression vector 2-norms for 10,000 random combinations of 

wavelengths for three subset sizes noted by the symbols using NIR spectra (left). A histogram of 

the wavelengths selected (right) in the green circled region for the better models 

 

     The Rashomon effect is apparent when regularization tuning parameters and/or pre-

processing methods are involved forming diverse regression models predicting similarly. Plotted 

in Figure 5 are accurately predicting RR model vectors over a range of ridge parameters. Another 

set of regression vectors are plotted in Figure 6 for a modeling updating method with two 

adjustable tunning parameters where model selection concentrates on model diversity predicting 

target samples similarly.56  
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Figure 5. Plots of prediction error against RR model vector 2-norms (left) for a range of ridge 

parameters showing a Rashomon set of models marked by the blue vertical lines and the local 

orthogonal CLS model (black circle). Respective RR and CLS regression vectors are plotted 

(right) with the CLS regression vector marked by the black line showing near orthogonality of 

the RR models. 

 

           Another multiple tuning parameter example involves varying the degree of spectral 

orthogonal projection for three pre-processing methods producing different regression vector 

solutions.57 The three projection approaches are named generalized Tikhonov regularization 

(GTR), generalized net analyte signal (GNAS), and generalized least squares (GLS) with 

respective tuning parameters β, γ, and λ varying the degree of orthogonality. Shown in Figure 7 

is the GLS prediction error heat map for various levels of pre-processing and number of PLS 

LVs. From the heatmap, is seen that GLS makes sets of models predicting equivalently and 

accurately. It is doubtful any of the diverse models are explainable to the true underlying matrix 

effects. The GTR and GNAS heat maps are similar with multiple accurately predicting models. 
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Figure 6.   A Rashomon set of PLS regression vectors accurately predict target samples. 

Reprinted with permission from Spiers RC, Kalivas JH. Reliable model selection without 

reference values by utilizing model diversity with prediction similarity. J. Chem. Inf. Model. 

2021;61:2220-2230. Copyright 2021 American Chemical Society. 

https://pubs.acs.org/doi/10.1021/acs.jcim.0c01493 

 

https://pubs.acs.org/doi/10.1021/acs.jcim.0c01493
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Figure 7. Heat map of log10(RMSEV) across GLS projection regularization parameter γ, the 

degree of orthogonal projection. Models without projections occur at γ = 0 and the orthogonal 

NAS models are found at the black horizontal lines. Reprinted from E. Andries, J.H. Kalivas. 

Interrelationships between generalized Tikhonov regularization, generalized net analyte signal, 

and generalized least squares for desensitizing a multivariate calibration to interferences. J. 

Chemom. 2013, 27: 126-140. https://doi.org/10.1002/cem.2501 

 

Paul Geladi Example 

Highlighted here is Paul’s modeling approach named regression model comparison plot 

(REMOCOP).3,4 He proposed that stronger predicting models will cluster together in a PC score 

plot from the PCA of a collection of models spanning respective tuning parameter ranges, e.g., 

https://doi.org/10.1002/cem.2501
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PLS, principal component regression (PCR), RR models. The under- and overfitted models will 

also correspondingly cluster.   

     Shown in Figure 8 are PCA score plots of the combined set of full tuning parameter ranged 

PLS and RR regression vectors for QSAR and NIR spectral datasets.56 Labeled are the better 

predicting selected models, suitable models but not selected, and under- and over-fitted models 

demonstrating the corresponding clusters and Rashomon effect, i.e., numerous regression models 

with different shapes and magnitudes are formed to effectively predict samples. 

          In Paul’s REMOCOP work, it was suggested that score values of a given model from a 

region of better predicting models can be modified to produce other good predicting models. This 

tactic essentially generates additional models in the Rashomon set. A similar approach was used 

where different groupings of score vectors were combined to create a collection of models from 

the Rashomon set with different shapes and magnitudes accurately predicting samples.58  

 

5.3.2 Economic Example 

Using structural and flexible functional modeling approaches, economic scientists arrived at the 

Rashomon situation. The existence of a single optimal model is questionable because many 

models fulfilled a data set with extraction of contradictory inferences.59-61 To assist in the 

analysis, it was advised that data should be allowed to speak for itself, but economic theory 

should be used whenever possible. Specifically, the perceptive Griliches quote from 1967, 

“Although it is admirable to use deep statistical theory with much stochastic structure in analysis, 

this is no substitute for economic theory.”62 This statement is akin to Wold’s emphasis on the 
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chemistry and chemical theory. Besides this economic example, numerous other examples exist 

in other fields. 

 

Figure 8. Score plots (logarithmic PC1) of RR and PLS models across tuning parameter ranges 

from multiple data splits for datasets QSAR (left) and NIR (right) showing RR and PLS selected 

models (green), over-fitted (red), under-fitted (cyan), and acceptable non-selected models 

(magenta). Reprinted with permission from Spiers RC, Kalivas JH. Reliable model selection 

without reference values by utilizing model diversity with prediction similarity. J. Chem. Inf. 

Model. 2021;61:2220-2230. Copyright 2021 American Chemical Society. 

https://pubs.acs.org/doi/10.1021/acs.jcim.0c01493 

 

5.3.3 Changing the Training Sample Set Forms Diverse Models 

In a noteworthy paper on the NAS and model explanation, mathematical CLS and ILS 

expressions were chemically and mathematically derived showing the effects of calibration 

samples and noise on determining respective models.63 Briefly, ( )
1

1 1T T

CLS

−
− −

=B Σ K KΣ K and 

https://pubs.acs.org/doi/10.1021/acs.jcim.0c01493
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( )
1

T T

ILS

−

=  + B K K Σ K  where  denotes the covariance matrix of measurement error and Ψ 

is the sample amount covariance estimated by YTY. For both CLS and ILS, K represents the 

same matrix affected pure component spectra included in F. The CLS model formed is the local 

NAS model relative to the matrix effects in the calibration set used to first estimate the local K, 

and then BCLS, i.e., KBCLS = I only for the matched set. Depending on the degree of matrix 

effects differences when changing calibration samples for CLS, the estimated K and BCLS, will 

locally change.  The ILS models maintain KBILS = L where L contains relaxation values from 

orthogonality (see section 5.3.5).52 As a reminder, in order to form a model orthogonal to the full 

complement of the matrix effects, the ‘global’ NAS model requires FB = I and this NAS model 

would be too overfitted (bumpy or jagged in appearance) to explain.20,48 

     It was shown with chemical data that by changing the calibration (training) set through random 

selection, the resultant ILS regression vector directions and magnitudes correspondingly change 

for a collection of diverse models and yet, the models accurately predict samples left out of the 

calibration.63,64 Changing the training samples alters matrix effects and by necessity, diverse 

regression vectors are expected from the different linear combinations of respective matrix 

effects and model explanation is not likely. Other examples of diverse models predicting samples 

well and similarly have been demonstrated and leveraged for model selection.65     

 

5.3.4 Model Selection: Diverse Models are Better than One Model 

In the previous subsection, it was mathematically documented and verified with chemical data 

that by selecting different calibration samples from a global iid sample pool, accurate predicting 

diverse ILS model regression vectors are formed with unique directions and magnitudes.63,64 
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Each model captures a different view of the particular underlying sample-wise matrix effects. 

Also previously noted was that changing model tuning parameters, accurate predicting diverse 

models are formed. Hence, it is judicious to use a family of models capturing the full calibration 

sample-wise matrix effect possibilities for reliable predictions of new samples with their 

particular matrix effects. Dissimilar models predicting a sample similarly improves the chances 

that the prediction is accurate. Trusting one model viewpoint does not seem prudent, e.g., 

expecting the one selected model that nulls non-analyte information in the training set to 

similarly null the non-analyte information present in new prediction samples. Instead, it is 

advocated here to exploit matrix effects to identify a collection of models that agree on the new 

sample predicted amounts.  

     Model diversity is not new to chemometrics. Model ensemble, consensus modeling, the local 

modeling algorithm LOCAL, and others use multiple prediction models. However, using model 

diversity in chemometrics seems underutilized. For example, strong chemical evidence of the 

usefulness of diverse models is stacked regression. This approach was used with PLS where it 

was shown that using a diversity of models allowed successful prediction of an outlier in the 

prediction set.66 A recent paper showed that by varying the model prediction error criterion for 

selecting the best model, diverse models are obtained resulting in composite predctions.67  

     Model diversity is similar to using multiple wavelengths (multivariate data) to obtain better 

answers in the analysis of spectral data. Requiring diversity also parallels fusion of multiple 

instruments and the multi-way method parallel factor analysis (PARAFAC) where each 

instrument and PARAFAC order provide alternate assessments of underlying sample-wise matrix 

effects for expanded data characterizations. Leveraging model diversity fits in with Svante 

Wold’s statement that “The study of complicated systems is by necessity multivariate.”9 
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         We end this section with a Carl Jung quote, “Meaningful coincidences are unthinkable as 

pure chance, the more they multiply, the greater and more exact the correspondence is … they 

can no longer be regarded as pure chance, but for the lack of a causal explanation, have to be 

thought of as meaningful arrangements.”68 

 

 5.3.5 Figures of Merit 

A Rashomon set of models will by default generate corresponding Rashomon sets of multivariate 

figures of merit (FOM) such as net analyte signal (NAS) with different orthogonality/angles to 

the matrix effects, selectivity, sensitivity, limit of detection, etc.2,20,51 Shown in Figure 9 are heat 

maps of relaxed CLS (rCLS) FOM selectivity and sensitivity values. Axis values are calculated 

by varying the relaxation laa and lia values for the analyte and the interferent respectively 

calculated by aa a

T ˆl = k b and ia i

T ˆl = k b  where the local K was estimated from local CLS for the 

particular training set.51 The FOM values for the local orthogonal CLS models with relaxation 

values with laa = 1.0 and lia = 0.0 are at the heat map centers. Clearly there are many useful 

models with acceptable FOM values. If FOM are being used to optimize a chemical analysis, 

then it would be expected to select from the Rashomon set, a process with the best FOM values. 

The optimized system relative to the FOM is one of many from a Rashomon set and many other 

FOM values are possible for the same chemical analysis with respective equally accurate models.    
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Figure 9. Heat maps of FOM sensitivity and selectivity for the analyte methanol and interferent 

water. Reprinted from J.H. Kalivas, J. Ferré, A.J. Tencate. “Selectivity-Relaxed Classical and 

Inverse Least Squares Calibration and Selectivity Measures with a Unified Selectivity 

Coefficient. J. Chemom. 2017, 31: 2925. https://doi.org/10.1002/cem.2925 

 

5.4 Model Summary 

Predicting with multiple useful diverse models is a direct ramification of the TAC multivariate 

guideline. Each TAC data order affords a different sample matrix effect perspective and 

likewise, individual models do the same. The TAC and the concept of predicting with diverse 

models also fit Svante Wold’s statement “The study of complicated systems is by necessity 

multivariate.”9  

 

 

https://doi.org/10.1002/cem.2925
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     The Rashomon effect was explored and we hope the examples presented among the many 

possible chemometric situations encourage discussion and usage of it. In each of the examples 

presented as well as other Rashomon effects observed in the chemometric literature, the TAC is 

central to the multivariate advantages obtained. In view of the Rashomon effect, Sir George 

Box’s famous quote is indeed insightful, “Essentially, all models are wrong, but some are 

useful.” following up with “… the practical question is, how wrong do they have to be to be 

useful.”69 A similar less familiar quote is from Peter Truran “... seemingly incompatible models 

may be used to make predictions about the same phenomenon. ... For each model we may 

believe that its predictive power is an indication of its being at least approximately true. But if 

both models are successful in making predictions, and yet mutually inconsistent, how can they 

both be true?”70 

     Regardless of model constraints (penalties), degree of orthogonality, preprocessing (SNV, 

MSC, derivatives, etc.),71 what is obtained are ‘useful’ models. At best, a useful model is perhaps 

‘rationalizable’ and may have some inferences. Correspondingly, useful FOM are obtained and if 

one model is being selected, it should have the best compromise set of FOM values.  

     We hope the reader is swayed that model explanation and interpretation are two unique 

concepts. Model interpretation is how a model affects the prediction and what chemometricians 

are more interested in is explaining the why of a model. Just because we view models as 

unexplainable due to the convolution of the matrix effects, it does not mean that models are not 

useful. The usefulness of training and prediction is obvious from the decades of research and 

applications. Additionally, we strongly agree with the quote from the famous statistician Sir 

David Cox, “Construction of idealized representations that capture important stable aspects of 
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such systems is, however, a vital part of general scientific analysis … .”72 Lastly, a generalizable 

model does not mean the model is explainable.  

 

6  SIMILARITY ASSESSMENT 

Determining if a sample is similar to another sample or to a domain space spanned by a 

collection of samples is not as simple as one may think. A basic innate human characterization of 

the similarity between two objects (samples) is the closeness relative to the degree of agreement 

between respective features. However, establishing a mathematical understanding of this deep-

rooted human similarity notion is difficult if not impossible. Even with a mathematical construct 

C, it is still vague to state object “A is similar to object B with respect to C”73,74 because the 

similarity is strictly relative to C and another mathematical measure can result in a completely 

different assessment. Unfortunately, many approaches to quantifying similarity have been 

developed and each is distinct in the way it encapsulates particular sample-wise matrix effects 

yielding different similarity results per measure including ensembled measures.73-84 Thus, the 

current approach to sample similarity is fragmented with each measure only providing a partial 

view of matrix effect wholeness. Said another way, considering all possible matrix effects as an 

unbroken whole, then a similarity measure is conceptualized as one particular aspect of the 

whole. 

      Accessing sample spectral similarity is further compounded by eq. 1 which specifies that 

different linear combinations of the basis vectors from F can create what appear to be 

indistinguishable spectra in shape and magnitude with widely varying analyte and other 

constituent amounts. Thus, similar spectra do not mean equivalent analyte amounts, as well as 

anything else physically or chemically similar between visually matching spectra. Additionally, it 
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seems unreasonable to expect that using one or two spectral similarity measures can act as the 

only viewing portals to capture all the diverse sample-wise matrix effects. Because a spectrum is 

a complex collection of matrix effects, it only makes sense to apply the TAC and use a 

multivariate approach for determining similarity and in so doing, leverage the multivariate 

Rashomon effect. Using a large collection of similarity measures provides a more reliable 

similarity assessment because many different aspects of the hidden matrix effects can be 

characterized for a consensus viewpoint of sample similarity. By using an assortment of 

measures, matrix effects are exploited providing a thorough view of sample heterogeneity 

improving the chances of accurately assessing how similar two samples are to each other. 

Applying multiple similarity measures is akin to a person using all their senses to combine 

multiple information streams ultimately producing contextual generalizations. Using the TAC to 

advance similarity assessment to be multivariate with multiple measures also fits Svante Wold’s 

point that “The study of complicated systems is by necessity multivariate.”9 However, while 

multiple similarity views of matrix effects are possible, currently it is difficult to attribute which 

particular matrix effects are assessed by each similarity measure. 

     Nonetheless, we have successfully applied the Rashomon effect by implementing hundreds of 

similarity measures to improve numerous common chemometric similarity applications. The 

rundown consists of using mid-infrared, NIR, UV, and VIS full spectra and thermogravimetric 

data for beer product authentication,85 ICP-MS for validating fava beans from Santorini,86 mid-

infrared to identify adulterated strawberry puree,87 heavy metal contamination of clams,86 

verification of meat samples as either turkey or chicken or pork,86 and microplastic 

classification,88 thirteen chemical measurements to classify three Italian wine cultivars,85 

restoration of defaced serial numbers using lock-in infrared thermography,89,90 and outlier 
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detection.91 Displayed in Figure 10 are heat maps for outlier detection and multi-class 

classification.85,91 The outlier detection situation is determining if any samples in a training set 

are outliers and the classification example is deciding which of three classes a target sample 

belongs to. Note that not every similarity measure identifies samples as outliers and vice versa. 

The zoom in Figure 10 clarifies this observation and the two samples with large similarity values 

were deemed outliers. Equally, not every similarity measure correctly determines the target 

sample to be a class 1 member and vice versa in Figure 10. If only one similarity measure is 

used, samples could be incorrectly assessed. The particular set of similarity measures used in 

these applications are just one set of many possibilities. The key suggestion here is that matrix 

effects as a whole are not assessed by one similarity view but it is better realized by multiple 

views for a more complete portrayal. The success of using multiple similarity measures is a 

direct application of using the TAC with the Rashomon effect where each fragmented measure 

presents its objective accounting of the matrix effects. 

     In addition to using a large collection of measures to assess sample similarity, an 

unconventional concept we have found extremely useful and included in our studies and Figure 

10 is to not optimize tuning based measures. For example, many similarity measures are based 

on an optimized number of PCs. However, it has been shown that altering calibration samples 

changes the dataset matrix effect complexity resulting in different regression models. 

Correspondingly, depending on the training sample-wise matrix effects, different numbers of PCs 

will be optimized for classification or outlier detection due to the respective covariance structure 

variants. The classic PC-based measure Mahalanobis distance (MD) can be used to describe the 

process. Instead of optimizing the number of PCs for one MD value, the MD is obtained for 
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consecutively increased number of PCs. The stopping point is not critical and to date we have 

used the 99% rule. Pictured in Figure 11 is a depiction of this windowing process.  

 

Figure 10. Heat maps of similarity values for outlier detection of each sample in a training set 

(left), a zoom of potential outlier samples (middle), and similarity values for a target sample 

being assessed for class membership to one of three classes (right). For both heat maps, color bar 

values correspond to a fused normalized similarity measures that can be converted to PRISM z-

score values. Reprinted with permission from Brownfield B, Kalivas JH. Consensus outlier 

detection using sum of ranking differences of common and new outlier measures without tuning 

parameter selections. Anal. Chem. 2017; 89:5087-5094 Copyright 2017 American Chemical 

Society https://pubs.acs.org/doi/10.1021/acs.analchem.7b00637 and Brownfield B, Lemos T, 

Kalivas JH Consensus classification using non-optimized classifiers. Anal. Chem. 2018; 

90:4429-4437. Copyright 2018 American Chemical Society. 

https://pubs.acs.org/doi/10.1021/acs.analchem.7b04399  

https://pubs.acs.org/doi/10.1021/acs.analchem.7b00637
https://pubs.acs.org/doi/10.1021/acs.analchem.7b04399


 35 

 

 

 

 

Figure 11. Characterization of a window of MD values for one sample. The value for k used to 

date has been the 99% rule. 

 

     Using tuning parameter windows provide a more thorough view of sample similarly relative 

to the matrix effects captured by the MD. The windowing process is just another multivariate 

tactic, as are using collections of diverse models and similarity measures, multiple wavelengths, 

etc. When PCs are optimized to one particular value, only one viewpoint of the MD is gained, 

i.e., a limited sample matrix effect view. It does not seem reasonable to expect one opinion to 

fully characterize the intricacies of the target sample relationship to the source sample PC base, 

let alone allow generalization possibilities.  

     Complementing the idea of PC windows, we have found it useful to not optimize the number 

of nearest neighbors nor PLS LVs in PLS discriminant analysis in our classification studies. 

Instead, we use a family of nearest neighbors and a collection of LVs.85-90 The classification heat 

map in Figure 10 contains the respective windows. Equally, we observed it is not useful to 

optimize the number of PLS LVs for outlier detection by studentized residuals and instead, a 

window of PLS LV studentized residual values is used.91 Included in the Figure 10 outlier 
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detection heat map are PLS LV windows. In another study, the window concept was successfully 

used in synchronous fluorescence spectra where rather than optimizing the wavelength interval 

between the excitation and emission wavelengths (∆λ), a collection of ∆λ intervals were used 

thereby removing the need for an experienced user to select.92 Not optimizing tuning parameters 

or pipelines is a direct impact of the TAC with the Rashomon effect where each tuning parameter 

value such as a fixed number of  PCs or LVs only provides a fragmented objective accounting of  

the information. 

     The Rashomon effect of multiple similarity measures was recently advanced to form a 

quantitative composite sample-wise z-score value named the physicochemical responsive 

integrated similarity measure (PRISM).20 Two PRISM values are used to establish each final 

sample PRISM z-score. One is based on directly leveraging spectral matrix effects forming 

PRISMX that can be used for numerous sample similarity purposes. The second can be used 

when regression is involved and, in this case, the matrix effects are indirectly exploited to form 

the PRISMy similarity measure by comparing analyte prediction amounts and other prediction 

reliability measures. Sample PRISM z-scores were used to evaluate model generalizability 

(prediction reliability) and outlier detection. Recently, PRISMX was used for one-class 

classification producing a z-score and conformal prediction values allowing probability of 

classification to be assessed.93   

     Important to the success of PRISM is that sample-wise differences for respective similarity 

measures are used, another non-typical data analysis approach. Using sample-wise differences of 

similarities relative to a base, such as a mean spectrum, permits a more detailed comparison of 

respective matrix effects between two particular objects.20,94-97 
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     Another distinctive aspect of PRISM is that some of its similarity measures can be thought of 

as assessing how much work is being performed in the comparison operation. For example, 

rather than using extended inverted signal correction (EISC) to preprocess spectra, we use the 

difference between magnitudes of respective sample transfer coefficients to assess how hard it is 

to transform a spectrum to appear similar to another spectrum.98 The same work concept can be 

applied to Procrustes analysis similarity measures. For example, if large difference exists 

between respective coefficients regardless of the fact that the transfer fit error is small, then the 

two samples would be considered poorly matrix matched because of the difficulty in the 

mathematical transformation to obtain the small residual fit error.  

     The PRISMX and PRISMy values are instrumental in a new autonomous local modeling 

approach named local adaptive fusion regression (LAFR).99 This approach is able to mine a 

library of spectra with analyte reference values and ultimately select a local calibration set that 

not only closely span a target sample spectrum but the calibration reference values also closely 

span the unknown target sample analyte amount. Shown in Figure 12 are boxplots of the LAFR 

calibration reference values for 30 randomly selected target samples from a library with 1172 

samples. Samples are cattle feces from North Australia over a 10-year collection with 3 sampling 

methods measured in the NIR for analyte percent crude protein content. Note the small interval 

of LAFR calibration reference analyte amounts spanning each target sample analyte amount. 

Prediction errors (RMSEPs) for the 30 target samples are respectively 1.26 and 0.73 using the 

full library (global, protein ranging from 0 to 26%) and LAFR local models showing significant 

improvement. The corresponding R2 values are 0.87 and 0.94. The largest library tested with 

LAFR is library of nearly 100,000 NIR spectra on soil samples covering a diverse set of sail 

samples across the United States.99 
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Figure 12. Boxplots of local modeling method LAFR calibration reference samples for 

respective target sample analyte values (green) and predicted amounts by LAFR (blue) and the 

global model (red).  

 

     Summarizing, we hope we have provided the reader with a new perspective on assessing 

similarity to consider the next time samples or datasets are being compared. Four key points to 

consider are: the more similarity measures used, the greater the comprehensive viewpoint 

obtained (TAC and Rashomon effect); sample-wise differences of similarity measures are more 

informative than similarity values; more consistent comparisons are obtained by using windows 

of tuning parameters values or pipelines rather than optimizing values (TAC and Rashomon 

effect); and lastly, when performing a similarity comparison, think about assessing similarity by 

how hard it is transform a sample to match another sample even though the fit error is small after 

the transformation. Applications of these four points are the reasons for the success of new 

methods described above. We think taking this multivariate approach to sample similarity 

promotes assurance in obtaining chemically relevant information.9  
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7  CONCLUSIONS 

We have presented some interesting chemometric directions to consider in fundamental and 

applied studies advocating for a deeper thinking on matrix effect intricacies relative to what is 

actually being captured by a model or similarity measure.  Arguments are offered to apply the 

TAC with the Rashomon effect by expanding multivariate data analysis beyond basic multi-way 

processes to include higher order approaches founded on using multiple diverse models, 

pipelines, and similarity measures. Each data view acts as its own microscope to probe samples 

for hidden information shedding light on the underlying matrix effects.  

     Our key take home messages are: Occam’s razor may not always be applicable (depends on 

the evidence from the chosen point of view); the curse of dimensionality is not necessarily a 

curse; the TAC and Rashomon effect for different data viewpoints are advantageous; 

chemometric models cannot be explained; sample-wise matrix effects should be leveraged in a 

positive way but are too complex to individually isolate. 

     The TAC and Rashomon effect were recently paralleled to physicist David Bohm’s concepts 

explicate and implicate orders by relating their communalities with the two orders.100 These 

orders are used by David Bohm to explain quantum mechanics and time in addition to linking the 

orders to neuropsychology and the philosophy of the mind. 

      Lastly, Svante Wold noted “… in chemometrics the main issue is to structure the chemical 

problem to a form that can be expressed as a mathematical relation.” 9 We interpret this statement 

to imply that one needs to first think about a problem or question and how to solve or answer the 

situation and then develop the mathematics. This approach is akin to these Einstein quotes “I 

believe in intuitions and inspirations. I sometimes feel that I am right. I do not know that I am… 
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[but] I would have been surprised if I had been wrong.” and “I am enough of the artist to draw 

freely upon my imagination. Imagination is more important than knowledge. Knowledge is 

limited. Imagination encircles the world.”101 
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