

Te Tāhuhu o te Mātauranga

GloSS INTERVIEW 3

ACTION: Place 7 counters of the same colour on the table. SAY: How many counters are there?

Stage	Strategy observed
0	Student cannot count 7 objects
1	Correctly counts the 7 objects
	I If "1" is sireled in Tesk 1 CONTINUE the interview
DECISION	If "1" is circled in Task 1 , CONTINUE the interview.
	If "0" is circled, rate the student at Stage 0 and STOP the interview.

TION: <i>PI</i> Y: He He	ace 8 counters under a card then place 5 under another card. Fre are 8 counters, and here are 5 counters. The many counters are there altogether?	
Stage	Strategy observed	
3	Cannot solve the problem (After removing the cards – Stage	e 1)
	Counts all objects from 1 on materials (Stage 2) e.g., 1, 2, 3,, 13	
	Counts all objects from 1 by imaging (Stage 3) e.g., 1, 2, 3	3,, 13
4	Counts on (Stage 4) e.g., 9, 10, 11, 12, 13 or 6, 7,, 12, 13	3
Early 5	Uses a part-whole strategy e.g.,	
or nighter	- Making to ten e.g., $8 + 2 = 10$; $10 + 3 = 13$ - Doubling with compensation e.g., $5 + 5 = 10$; $10 + 3 = 13$ or - Addition fact e.g., $8 + 5 = 13$	8 + 8 = 16; 16 - 3 = 13

INTERVIEW 3 TASK 5 You have 12 lollipops for your party. A quarter of the lollipops are lemon.

 ACTION: Provide 12 counters (lollipops). Allow the student access to these counters if necessary.
 SAY: You have 12 lollipops for your party. A quarter of the lollipops are lemon. How many lemon lollipops are there?

Note: Say "fourth" instead of "quarter" if this is more familiar to your student.

You have 12 lollipops for your party. A quarter of the lollipops are lemon.

and

Stage	Strategy observed
2–4	Cannot solve the problem
	Equally shares the lollipops, on materials or by imaging (Stage 2–4)
Early 5 or higher	Uses an additive or multiplicative strategy e.g., - Additive partitioning e.g., $6 + 6 = 12$ and $3 + 3 + 3 + 3 = 12$ - Multiplication or division strategy e.g., $3 \times 3 = 9$; $9 + 3 = 12$ - Multiplication or division fact e.g., $4 \times 3 = 12$ or $12 \div 4 = 3$
DECISION	If any "E5" are circled in Tasks 3, 4 or 5, <u>or</u> if the "4s" are circled in both Task 3 Task 4, CONTINUE the interview.

Otherwise STOP the interview. If in any doubt, CONTINUE the interview.

ASK 6 7: Tui h She How	has \$36. needs \$58 to buy a kitten. much more does she need to save?	
Stage	Strategy observed	
Early 5	Cannot solve the problem or Uses an earlier numeracy stage	
-	Counting on or Counting back (Stage 4) e.g., 37, 38,, 58	
	Skip counting in tens and ones (Stage 4) e.g., [36] 46, 56, 57, 58	
	Repeat addition in tens and ones (Stage E5) e.g. , 58 - 10 = 48; $48 - 10 = 38$; $38 - 2 = 36$; $20 + 2 = 22$ or 36 + 10 = 46; $46 + 10 = 56$; $56 + 2 = 58$; $20 + 2 = 22$	
	Mix of counting and part-whole strategies (Stage E5) e.g., 36 + 4 = 40; 40 + 10 = 50; 51, 52,, 57, 58	
5 or higher	Uses a part-whole strategy e.g., - Place value partitioning e.g., $(50 - 30) + (8 - 6) = 20 + 2 = 22$	
	- Adding on in parts e.g., $36 + 20 = 56$; $56 + 2 = 58$; $20 + 2 = 22$ - Making to ten e.g., $36 + 4 = 40$; $40 + 10 = 50$; $50 + 8 = 58$; $4 + 10 + 8 = 22$	

There were 45 students at a quiz night. Each team had 5 students in it.

How many teams were competing in the quiz?

SAY: There were 45 students at a quiz night. Each team had 5 students in it. How many teams were competing in the quiz?

	Skip counting (Stage 4) e.g., 5, 10, 15,, 45 Repeated addition (Stage E5) e.g., $5 + 5 + 5 + + 5 = 45$
5 r higher	Uses an additive or multiplicative strategy e.g., - Additive strategies e.g., $5 + 5 = 10$; $10 + 10 = 20$; $20 + 20 = 40$; $40 + 5 = 45$; $8 + 1 = 9$ - Derive from multiplication facts e.g., $4 \times 5 = 20$; $20 + 20 = 40$; $40 + 5 = 45$; $8 + 1 =$ - Multiplication or division facts e.g., $5 \times 9 = 45$ or $45 \div 5 = 9$

Y: Kimb How	erley irons her 8 T-shirts in 4 minutes. ong does it take her to iron 1 T-shirt?	Kimberley irons her 8 T-shirts in 4 minutes.
Stage	Strategy observed	
Early 5	Cannot solve the problem or Uses an earlier numerac	y stage
	Incorrect additive strategy (Stage 4) e.g., 4 + 4 = 8; 1 + 4 = 5 minutes or 4 + 4 = 8 so 1 + 1 = 2 m	inutes
5 or higher	Uses a proportional approach e.g., - Additive strategies e.g., $\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 4$ or $4 + 4 = 8$ and $\frac{1}{2} + \frac{1}{2} = 1$ so the answer is $\frac{1}{2}$ Multiplicative strategies e.g., 4 is helf of 2 as it's helf of 1	minute or $4 \div 8 = \frac{1}{2}$ minute

If only "E5" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

Kimberley irons her 8 T-shirts in 4 minutes.

How long does it take her to iron 1 T-shirt?

INTERVIEW 3 TASK 9

There were 128 lambs in a field. Another 74 lambs joined them.

How many lambs were there altogether?

AY: Ther Ano How	The were 128 lambs in a field. Ther 74 lambs joined them. It many lambs were there altogether? How many lambs were there altogether?	
Stage	Strategy observed	
5	Cannot solve the problem or Uses an earlier numeracy stage	
	Skip counting in tens and ones (Stage 4) e.g., [128] 138,, 198; 199, 200, 201, 202	
	Repeat addition in tens and ones (Stage E5) e.g., 128 + 10 + 10 + + 10 = 198; 199, 200, 201, 202	
	Mix of counting and part-whole strategies (Stage E5) e.g. , 128 + 10 + 10 + + 10 = 198; 198 + 2 + 2 = 202	
	Mix of counting and part-whole strategies (Stage E5) e.g., 128 + 10 + 10 + + 10 = 198; $198 + 2 + 2 = 202Attempts part-whole strategy with error (Stage E5) e.g., 192 (no carrying)$	
Early 6 or higher	Mix of counting and part-whole strategies (Stage E5) e.g., $128 + 10 + 10 + + 10 = 198; 198 + 2 + 2 = 202$ Attempts part-whole strategy with error (Stage E5) e.g., 192 (no carrying) Uses a part-whole strategy e.g., - Place value partitioning e.g., $(120 + 70) + (8 + 4) = 190 + 12 = 202$ - Adding on in parts e.g., $128 + 70 = 198; 198 + 4 = 202$ or $120 + 74 = 194; 194 + 8 = 202$	

лс	

TASIC IU		Ra has 6 packets of biscuits. There are 15 biscuits in each packet.
5AY: Rah Ther How	as 6 packets of biscuits. e are 15 biscuits in each packet. many biscuits does Ra have?	How many biscuits does Ra have?
Stage	Strategy observed	
5	Cannot solve the problem or Uses an earlier numeral Uses an additive strategy e.g., - Skip counting (Stage 4) e.g., 15, 30, 45, 60, 75, 90 [or - Repeated addition e.g., (Stage E5) e.g., 15 + 15 + + 15 = 90 [or 6 + 6 + + 6 = 90] - Doubling additively (Stage 5) e.g., 15 + 15 = 30; 30 +	acy stage 6, 12, 18, …, 90] 30 = 60; 60 + 30 = 90
Early 6 or higher	Uses a multiplicative strategy e.g., - Place value partitioning e.g., 6 × 10 = 60; 6 × 5 = 30; 6	60 + 30 = 90

- Derived from basic fact e.g., $6 \times 10 = 60$; 60 + 6 + 6 + 6 + 6 = 90
 - Halving and doubling e.g., $6 \times 15 = 3 \times 30 = 90$

TASK 11 SAY: You c Then What	ut a lamington into 4 equal pieces. you cut each piece in half. fraction of the lamington are these smaller pieces?
Stage	Strategy observed
 Cannot solve the problem OR Uses an earlier numeracy stage Counting strategy (Stage 4) e.g., 1, 2, 3,, 8 so the pieces are eighths 	
Early 6 or higher	 Uses an additive or multiplicative strategy e.g., Additive strategy e.g., 2 + 2 + 2 + 2 = 8, so these pieces are quarters, and the smaller ones are eighths Multiplicative strategy e.g., 4 × 2 = 8 so the pieces are eighths
DECISION	If any "E6" are circled in Tasks 9, 10 or 11 , CONTINUE the interview. If only "5" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

TASK 12	INTERVIEW 3 TACK 12 Mitchell had 231 toy cars in his o He sold 7 8 of them.
AY: Mitch He so How	ell had 231 toy cars in his collection. bld 78 of them. many cars did he have left? How many cars did he have left?
Stage	Strategy observed
Early 6	Cannot solve the problem or Uses an earlier numeracy stage
	Mix of counting and part-whole strategies (Stage E5) e.g., [231] 22 1, 201,, 161; 161 – 1 = 160; 160 – 7 = 153
	Attempts part-whole strategy with error (Stage 5) e.g., 231 - 80 = 151; $151 - 2 = 149$ (compensates in the wrong direction)
6 or higher	Uses a part-whole strategy e.g., - Place value partitioning e.g., $(230 - 70) + (1 - 8) = 160 - 7 = 153$ - Making to hundreds e.g., $231 - 31 = 200$; $78 - 31 = 47$; $200 - 47 = 153$

- Subtracting tidy number and compensation e.g., $231 - 80 = 151$; $151 + 2 = 153$
- Equal additions e.g., 231 – 78 = 253 – 100 = 153

Mitchell had 231 toy cars in his collection. He sold 78 of them.

How many cars did he have left?

INTERVIEW 3 TASK 13

The teacher bought 48 packs of pencils at the beginning of the year. There were 5 pencils in each pack.

How many pencils did she buy?

SAY: The teacher bought 48 packs of pencils at the beginning of the year. There were 5 pencils in each pack. How many pencils did she buy?

age	Strategy observed
arly 6	Cannot solve the problem or Uses an earlier numeracy stage
	Uses additive strategies e.g.,
	- Doubling additively (Stage 5) e.g., 48 + 48 = 96; 96 + 96 = 192; 192 + 48 = 240
6 or higher	Uses a multiplicative strategy e.g.,
	- Place value partitioning with basic facts e.g., $(5 \times 40) + (5 \times 8) = 200 + 40 = 240$
	- Doubling and halving e.g., $48 \times 5 = 24 \times 10 = 240$
	- Rounding and compensation e.g., $(5 \times 50) - (5 \times 2) = 250 - 10 = 240$

The teacher bought 48 packs of pencils at the beginning of the year. There were 5 pencils in each pack.

	What fraction of a pizza does each friend get?	
Stage	Strategy observed	
Early 6	Cannot solve the problem or Uses an earlier numeracy stage	
	Uses an additive strategy (Stage 5) e.g., $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ each, the remaining half is cut into three pieces, but cannot name the combined fraction.	
6 or higher	Uses a multiplicative strategy e.g., Two lots of $\frac{1}{3}$ of $1 = 2 \times \frac{1}{3} = \frac{2}{3}$ or 2 out of 6 pieces is $\frac{2}{3}$ of one pizza or $3 \times \frac{1}{2} = 1\frac{1}{2}; \frac{1}{3}$ of $\frac{1}{2} = \frac{1}{6}; \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$	
	V. If any "6" are circled in Tasks 12, 13 or 14, CONTINUE the interview	

Three friends share two pizzas.

What fraction of a pizza does each friend get?

INTERVIEW 3 TASK 15

The electrician has 5.33 metres of cable. He uses 2.9 metres on a job.

How much cable is left?

SAY: The electrician has 5.33 metres of cable. He uses 2.9 metres on a job. How much cable is left?

6	Cannot solve the problem or Uses an earlier numeracy stage Misinterprets decimal place value (Stage 6) e.g.,
	- Ignores the decimal points e.g., $533 - 29 = 504$
	- Treats numbers after the decimal as whole numbers e.g.,
	5.33 - 2.9 = (5 - 2) + (0.33 - 0.9 "=" 0.24) = 3.24
Early 7 or higher	Uses part-whole strategies e.g.,
	- Taking off in parts e.g., 5.33 – 2.0 = 3.33; 3.33 – 0.9 = 2.43
	- Place value partitioning e.g., $(5-2) + (0.3 - 0.9) + 0.03 = 3 - 0.6 + 0.03 = 2.43$
	- Making to ones e.g., 2.9 + 0.1 = 3.0; 3.0 + 2.33 = 5.33; 0.1 + 2.33 = 2.43
	- Rounding and compensation e.g., 5.33 – 3.0 = 2.33; 2.33 + 0.1 = 2.43

Solomona has ordered 81 tennis balls. They are in cans of 3 balls.

INTERVIEW 3 TASK 17

Mihi and Josh have three-quarters $(\frac{3}{4})$ of a cake. They share it equally.

How much cake does each person get?

SAY: Mihi and Josh have three-quarters of a cake. They share it equally. How much cake does each person get?

Note: Say "three-fourths" instead of "three-quarters" if this is more familiar to your student.

Slage	
6	Cannot solve the problem or Uses an earlier numeracy stage
Early 7 or higher	Images three quarters, and equally shares e.g., $\frac{1}{4}$ plus $(\frac{1}{2} \text{ of } \frac{1}{4}) = \frac{1}{4} + \frac{1}{8} = \frac{2}{8} + \frac{1}{8} = \frac{3}{8}$
	Uses a multiplicative strategy e.g., $\frac{1}{2}$ of $\frac{1}{4}$ is $\frac{1}{8}$ so $\frac{1}{2}$ of $\frac{3}{4} = 3 \times \frac{1}{8} = \frac{3}{8}$
ECISION	If any "E7" are circled in Tasks 15, 16 or 17, CONTINUE the interview.
	If only "6" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

ASK 18		INTERVIEW 3 TASK 18
f: The ce The bo How h ceiling	eiling is 2.3 metres high. bokcase is 1.845 metres high. igh, in metres, is the space between the bookcase and the ?	The ceiling is 2.3 metres high. The bookcase is 1.845 metres high. How high, in metres, is the space between the bookcase and the ceiling?
Stage	Strategy observed	
Early 7	Cannot solve the problem or Uses an earlier numeracy	stage
	Misinterprets or ignores decimal place value (Stage 6) $2.3 - 1.845 = (2 - 1) + (0.3 - 0.845)$ "=" $1 - 0.842 = 0.158$	e.g., 3 or 0.152
7 or higher	Uses part-whole strategies e.g.,	
	- Place value partitioning e.g., $(2 - 1) + (0.3 - 0.845) = 1 - 0.545 = 0.455$ or $(2.3 - 1.8) + (0 - 0.045) = 0.5 - 0.045 = 0.455$	
	- Making to ones e.g., 1.845 + 0.155 = 2.0; 0.155 + 0.3 = 0.455	

The ceiling is 2.3 metres high. The bookcase is 1.845 metres high.

How high, in metres, is the space between the bookcase and the ceiling?

How many batches of scones will Joni be able to bake?

SAY: Joni has 1.5 kilograms of butter in the fridge. A batch of scones requires 0.075 kilograms of butter. How many batches of scones will Joni be able to bake? AUTENTIEVE STARK 19 Joni has 1.5 kilograms of butter in the fridge. A batch of scones requires 0.075 kilograms of butter.

How man to bake? atches of scones will Joni be able

Early 7	Cannot solve the problem or Uses an earlier numeracy stage	
-	Attempts multiplication strategy (Stage 6)	
7 or higher	Uses multiplication strategies e.g., $0.075 \times 20 = 1.5$ [because $75 \times 2 = 150$] so the answer is 20 or $1500 \div 75$ (simplify by 5) = $300 \div 15 = 60 \div 3 = 20$ or 2 batches need $2 \times 0.075 = 0.15$; $10 \times 0.15 = 1.5$; $2 \times 10 = 20$	
	2 batches need 2 × 0.075 = 0.15; 10 × 0.15 = 1.5; 2 × 10 = 20	

TASK 2		One-fifth $(\frac{1}{5})$ of the birds on the lake are swans. There are 40 other birds on the lake.
AY: One The Hov	e-fifth of the birds on the lake are swans. re are 40 other birds on the lake. v many birds are on the lake altogether?	How many birds are on the lake altogether?
Stage	Strategy observed	
Early 7	Cannot solve the problem or Uses an earlier numerad	cy stage
	Uses additive strategies (Stage 6) e.g. , $\frac{4}{5}$ is 40 because 10 + 10 + 10 + 10 = 40 so $\frac{1}{5}$ is 10; $\frac{5}{5}$ is	40 + 10 = 50
7 or higher	Uses a multiplicative strategy e.g., $\frac{4}{5}$ is 40 because 4 × 10 = 40, so $\frac{5}{5}$ is 5 × 10 = 50	
	$\frac{4}{10}$ in $40 = \frac{1}{10}$ in $40 = 40 = 10^{10}$ in $5 = 10 = 50$	

DECISION: If any "7" are circled in **Tasks 18, 19** or **20**, CONTINUE the interview. If **only** "E7" are circled, STOP the interview. If in any doubt, CONTINUE the interview.

One-fifth $(\frac{1}{5})$ of the birds on the lake are swans. There are 40 other birds on the lake.

How many birds are on the lake altogether?

INTERVIEW 3 TASK 21

Petrol costs 210.9 cents a litre. Your car takes 40 litres.

Will you be able to buy 40 litres if you have \$85?

SAY: Petrol costs 210.9 cents a litre. Your car takes 40 litres. Will you be able to buy 40 litres if you have \$85?

7	Cannot solve the problem or Uses an earlier numeracy stage Attempts multiplication strategy e.g. , 40 × 200 = 8000	
Early 8	Uses multiplication strategies e.g.,	
or higher	- Place value partitioning e.g.,	
	40 × 200 = 8000; 40 × 10 = 400; 40 × 0.9 = 36; 8000 + 400 + 36 = 8436c = \$84.36	
	- Rounding dollars and cents e.g., Round 210.9 to 211 then	
	$40 \times \$2 = \$80; 40 \times 10c = \$4; 40 \times 1c = 40c; \$80 + \$4 + 40c = \84.40	
	- Unitising (i.e. cost of fuel per litre if 40 litres costs \$85) e.g.,	
	$80 \div 40 = $2; 5 \div 40 = \frac{1}{8}; \frac{1}{8}$ of $$1 = 12.5$ cents; so could pay if petrol cost	
	212.5 cents per litre	

SAY: Mei-ling saved \$40 in 16 weeks. She saved the same amount each week. How much had she saved after 6 weeks?		
Stage	Strategy observed	
7	Cannot solve the problem or Uses an earlier numeracy stage	
	Uses inappropriate additive strategy (Stage 5) e.g., 16 - 6 = 10; 40 - 10 = 30 or $6 + 10 = 16; 30 + 10 = 40$	
	Uses estimation (Stage 6–7) e.g. , $6 \le \frac{1}{2}$ of 16; $15 \le \frac{1}{2}$ of 40; so an estimate is 15	
Early 8	Use a proportional approach e.g.,	
or higher	- Equivalent fractions or ratios e.g., $\frac{6}{16} = \frac{3}{8}$; $\frac{3}{8} \times 40 = 15$ or	
	40:16 = 20:8 = 10:4 = 5:2; (10 + 5):(4 + 2) = 15:6 so the answer is 15 or	
	40:16 = 20:8 = 15:6 (using $\frac{3}{4}$ of 20 and $\frac{3}{4}$ of 8) so the answer is 15 or	
	40:16 (8 as a factor) = $5:2 = 15:6$ so the answer is 15	

Stop the interview

Mei-ling saved \$40 in 16 weeks. She saved the same amount each week.

How much had she saved after 6 weeks?